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Piezo-optic Birefringence in NaCI Structure Crystals. III 
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Following the theoretical approach of Bansigir and Iyengar, an expression for the stress-optical coeffi- 
cient q44 is developed. Using experimental values of q44, ionic polarizibilities of some ions are calculated. 
Also, the wavelengths at which q44 = 0 are evaluated for a few crystals. Both ionic polarizabilities and 
reversal wavelengths are found to be in good agreement with reported values. 

Introduction 

Some years ago, an improved theory (Bansigir & Iyen- 
gar, 1961a) of artificial birefringence observed in cubic 
crystals with the sodium chloride structure, subject to 
uni~xial deformation in the direction of a cube axis, 
was developed. The theory was limited to a discussion 
of observations made along a cube axis chosen normal 
to the deformation axis and the birefringence charac- 
terized by the elasto-optic coefficients Pu and P12 and 
their difference. The consequences following from the 
theory were separately dealt in Part II of the paper 
(Bansigir & Iyengar, 1961b). During recent years new 
observations relating to the elasto-optic coefficient P44 
and the corresponding piezo-optic coefficient q44 have 
been reported (Laiho & Korpela, 1968; Rahman 
& Iyengar, 1970). In this paper the theory has been 
extended on the lines of Part I (Bansigir & Iyengar, 
1961a) to cover the related phenomena. 

Phenomenologieal theory and expression for q44 

Let a rectangular bar of cubic crystal with orientation 
[110], [001], [110] (to be called x', y', z' respectively), 
be stressed along the z '  direction. The induced refrac- 
tive index changes are related to the strain t ' ,  through the 
following expressions based on the phenomenological 
theory of Pockels (1906) 

n 3 
n3 t '  = - q44 (]44 t t, ( 1 ) nz,-nx,= -P44- 2 .... ~ -  

where n is the refractive index in the unstrained con- 
dition, nz, and n~, are the altered refractive indices for 
the light vibrating in the z' and x' directions and C44, 
the relevant elastic coefficient of the crystal. 

The alteration in the refractive index is caused by 
(i) change in the density of the crystal, i.e. change in 
the number of dispersion centres in unit volume, 
(ii) change in the polarizibility of the ions. 

(i) If a unit volume of the crystal is stressed along 
z', a strain t '  along this direction and a corresponding 
strain - t rx, t '  and - try, t '  along x' and y' would be 
produced where trx, and try, are the Poisson's ratio in 

the x' and y' directions respectively. Hence the change 
in the volume would be t '[1- (try, +try,)]. This volume 
change would bring about a change 6Nj in the number 
of ions per unit volume and is given by - t ' [ 1  -(trx, + 
try,)]Nj where Nj represents the number of ions per 
unit volume. 

(ii) The factors affecting polarizibility are 
(a) the Lorentz-Lorenz anisotropy due to the material 

continuum, 
(b) the Lorentz-Lorenz anisotropy due to dipoles with- 

in the cavity, 
(c) the Coulomb anisotropy due to the presence of + ve 

as well as - v e  ions within the cavity. 

Lorentz-Lorenz anisotropy due to the material con- 
tinuum has been calculated by Mueller (1935)on the 
lines suggested by Havelock (1908). He has shown 
that for a medium strained in the z' direction (where 
the strain ellipsoid has an axial ratio of 1 : 1 : 1 + t'), the 
refractive index for light vibrating in the x' direction is 
given by (Brayborn, 1953) 

3(n2,-1)=4nNjo~j[(n2,+2)+K~,(n2-1)] (2) 

with a similar expression for vibration along the z' di- 
rection, where Kx, = 2t'/5 and Kz, = - 4t'/5, c 9 = polarizi- 
bility of the ion under consideration and Nj the num- 
ber of molecules per unit volume. 

The expression for dipole anisotropy if the incident 
field is polarized in the z' direction, the centre being 
occupied by a +ve or - v e  ion, is given by 

t' 
Ejz,d=Djkz, (/zk,,) ~ (3a) 

where j represents the ion occupying the centre of the 
cavity, k the ion the effect of which is to be calculated 
at the centre, d indicates that the field is dipole in 
nature, and y is the distance between any two ions 
along the edges of the unit cell. 

For light polarized in the x' direction, the corre- 
sponding expression is 

t ! Ejx,d= Dj~x, (/~kx,) ~ .  (3b) 
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Itk~ and /tkx, in the above expressions are the dipole 
moments along z' and x' respectively; Dj~, and D i g  x, 

are numerical values of finite lattice sums in the de- 
formed states. 

The expression for the field created due to Coulomb 
anisotropy by the charges present in the cavity, for 
light polarized in the z' direction is given by 

Ejz, ~ = (fit '/?3)Cjkz, (c~/f~) (4a) 

and for light polarized in x' direction by 

Ejx,¢=(flt '/73) C~x, (~k/f~) (4b) 

where fl is the number of valence electrons, ~ is the 
polarizability of the +ve o r - v e  ion and f~ is the 
oscillator strength of the +ve or - v e  ion. Cjkz' and 
C ~ ,  are numerical constants of the lattice. The Cou- 
lomb fields are created because, under the influence of 
the incident field, the - v e  and + ve ions are displaced 
by amounts s, and s2, or Sk in general, giving rise to a 
dipole whose moment could be expressed asfke*s,/}f4~ 
=/zg~, or /z~x, where e* = effective charge (Fr6hlich, 
1949). 

The dipole moment of the j th  ion in the presence 
of the resultant field (arising from continuum, dipole 
and Coulomb anisotropies) is given by 

where 

(/.ljz,)idcp=t~jFjz, in the z' direction, (5a) 

(~ljx,)idcp---~ o~jFjx, in the x' direction, (5b) 

Fjz ,=E~ ,+Ej~ ,d+Ej~ , c+Kz ,P j ,  (6a) 

Fj~,=E~x,+Ej~,d+Ejx,~+K.,~,Pj.  (6b) 

E~ is the incident field and Pj the polarizibility of the 
medium per unit volume. 

Alternatively, the dipole moment in the expressions 
(6) could be assumed to arise due to the effective 
polarizabilities C~z, or ~jx, in the z' and x' directions 
under the incident fields E~z, or Eg~, according to 

(/t~,)i~p = ~ ,  Ezz, , (7a) 
(/zjx,)~,~ = ~jx,E~x, • (7b) 

It is assumed that the Lorentz-Lorenz equation for 
the refractive index n in the form 

n z -  1 Njc~j (8) 
n2+2 - ~  ..... 3 ..... 

holds good. 
Thus equations (5), (6), (7) and (8) yield 

, + (n2-1)} t ' ] (9a) 

~jx, =Tj [1+ {-(n2; 2)(Dikx" O~kh)3_.[_ Cjkx" t~k/,3fk) 

+-~ (n2-1)} t']. (9b) 

The changes in the polarizabilities in the two direc- 
tions z' and x' are then as follows: 

fi0c=, = (D~2=, + C~2,,) [(a)= + (~)2] 

+2(5)(~) (Du=,+C~, ,  (10a) 

~Tx, = (O~2,, + C~2x,) [(fi)2 + (~)2] 

+2(a)(k) (D,1 x,-4- C,,x, ) . (lOb) 

The expressions for the D's and C's are evaluated as- 
suming that 

x' = V2(}'- ~y2), y'  = ~ -  a71, z' = V2(:~ + fiya) 

where y is the distance between any two ions taken 
along the edges of the unit cell. 6},a, fiYz and flY3 are 
changes brought about in the y', x' and z' directions 
respectively by the applied stress. Values thus ob- 
tained are given in Table 1. 

Table 1. Numerical constants 

D1t~, = Dz2z, = 2 " 4 8 7 + 7 " 4 6 0 a x , - 4 . 9 7 4 t r ¢  
D12~, = Dzlz ,  = - 0 " 5 3 0 -  1 - 5 9 1 t r y , +  l ' 0 6 1 t r y ,  
DH~, = D22~, = - 7 " 4 6 0 -  2"487a~,,  - 4 .974o-  r. 
Dlzx,  : D21x, = 1"591 + 0 " 5 3 0 t r x , +  1-061try,  
C11~, = C2zz, = 2 2 " 6 1 7 - 7 " 5 3 9 t r ~ , - 7 . 5 3 9 a y ,  
C t ~ ,  = C2z~, = - 4 " 2 4 2 t r x , - 4 . 2 4 2 t r y ,  
C11~,, = C22~, = 7 " 5 3 9 - 2 2 - 6 1 8 t r ~ , , - 7 . 5 3 9 a y ,  
Clz~, = C21~, = 4 " 2 4 2 -  4 . 2 4 2 a ¢  

Assuming that c~=~+5, the changes in polariza- 
bilities along z' and x' are expressed as follows: 

t t 

tic, z, = 4-~73 [ ( -  51.268 - 11.508ax, + 18.664a¢) 

x [(~)2_ ~(~)] _ (0.530 + 5.833ax, + 3.181 cry,) ct2], 

(11a) 

t t 

flax, = ~ [(11.508 + 51.268ux, + 18.664a¢) 

x [(~)2 _ c~(~)] + (5.833 + 0.530trx,- 3.181 cry,) c~z]. 

( l lb)  

1 
Putting ml = ~ -  [ -  51.268 - 11.508trx, + 18.664aA, 

- 1  
n~ = ~ [0"530 + 5"833ax, + 3" 181 ~ry,], 

1 
m2= 4~- [11"508 + 5 l'270tL,, + 18-664a A , 

1 
n2= ~-n [5"833+0"530ax,-3.181ar,] 
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and taking into consideration all the anisotropies and 
density change, the changes in the refractive indices 
along z' and x' are 

I o n  

2mlOlu2Ny a 
dn~,= - { 1 - ( a x , + c r y , ) } L l + M x K ~ , +  3 Cl 

Br 
6nlM1] t' (12a) 

- 2miLiu + N) )3 ] ' I 

2m2Olu2Ny 3 Na 
dnx'= - ( 1 - ( a x ' + a Y ' ) } L I + M I K x ' +  3 K 

6n~M~], 
- 2 m 2 L l u +  N73 i t ,  (12b) Rb 

where 

Table 2. Polarizability ~j at = 5890 A (cmax 10 -24) 

Born and 
Calculated Fajans Heisen- Paul- Shock- 

value and Joos berg ing ley 
3.1290 NaC1 
3.4126 KC1 3.53 3.05 3.06 2.92 
2-6613 RbC1 
4-6619 KBr 4"97 4.17 4.77 4-12 
4.3053 RbBr 
6"9018 KI 7"55 6-28 7"10 6"41 
6"5001 RbI 
0"2526 NaCI 0"196 0 .210  0-179  0.280 
0"8183 KC1 
0-8742 KBr 0.88 0-87 0-83 1"13 
0"8274 KI 
2"1885 RbC1 
1"9916 RbI . . . .  
1.8571 RbBr 

4zc(~ or fi) (n 2 - 1 )  (n 2 + 2) 
u = 73 , Li = 6n 

(n 2 - 1) 2 (n 2 + 2) 2 
M 1 -  6n , O 1 -  6n 

Therefore 

( l + a x , )  2 [ 
q44= E'  n 3 M l ( g z ' -  gx') 

2(mi - m2)NzSOau 2 
+ 3 - 2(ml - m2)Ll u 

+ 6(n i -n z )M1  
N? a ] (13) 

o r  

(l+cr~,) 2 [ _ ~  
q44= - E '  n 3 +3.329 (1 +cr~,)NyaOlu 2 

M~ ] (14) -9"986(1+cr~,)Llu+0.759(1 +a~')--N-~ " 

The expressions for Poisson's ratio a, ,  and Young's 
modulus E '  in terms of elastic constants are given in 
the Appendix. 

Appl ica t ions  

To test the validity of the theory the following aspects 
are considered: 

(2) Reversal wavelength 

Putting q44---0 in expression (14) and substituting 
u=4~rc~j/? 3 reduces it to the following form 

a(~zj/?3)ZNy301 + b(~zj/?a)Li + c(M1/N? 3) = 0 ,  (15) 

where a, b, and c are constants. Substituting the values 
of L1, 01 and M1 and dividing throughout by (n z -  1)2, 
equation (15) becomes 

615+ 59.918(1 +ax,)  (=/~)2_ 59.918(1 +ax,)  (~/~) 
+0-759(1 + a x , ) = 0  (16) 

since 
n 2 - 1 Nc~ 
n+22 3 

Equation (16) gives the ratio between (i) the polarizi- 
bility of the - r e  ion to the total polarizability; (ii) the 
polarizibility of the +ve  ion to the total polarizability. 
Assuming that the polarizability of the +ve  ion does 
not change with the frequency of the incident radia- 
tion and taking ~t to be the polarizability of the + ve 
ion at 5890 A, the total polarizability c~ at q , = 0  is 
calculated. This gives the polarizability at reversal. 

The wavelength corresponding to polarizability at 
reversal is calculated from the equation 

t 2 
A 2re v 

~rev - -  2 2 2rev-- 2 

where 2~ is the first exciton peak wavelength and A' a 
constant. 

Values thus obtained for reversal wavelength are 
given in Table 3. They are found to be in good agree- 
ment with observed values. 

(1) Ionic polarizabilities 

Using experimental values of q44, expression (14) 
+ was solved for u. Two values, the higher one corre- 

+ 
sponding to - v e  ion and lower one to +ve  ion were Crystal 5890/~ e/e 
obtained. (The polarizability of - v e  ion ~=fi73/4~ KI 0.827 0.0618 
and +ve  ion ~=~y3/47~. ) Calculated values of ej's RbBr  1-857 0.0772 
for various ions are tabulated in Table 2 and compari- RbI 1.992 0.0799 

RbCI 2-188 0-0703 
son with those obtained by other investigators show KBr 0.874 0-0654 
that they are in good agreement. KC1 0.818 0.0618 

Table 3. Reversal wavelengths 
2 2 

~,ev Calcu- Obser- 
x 10 za 2t lated ved 

13.3884 2190 3083 2900 (9) 
24.0556 1910 2170 2140 (6) 
24-9260 2230 2640 2300 (6) 
31.1309 1660 1793 
13.3670 1870 2360 - -  
13.2411 1620 1985 

A C 2 9 A  - 4 
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This method could also be adopted to determine the 
reversal wavelengths for q n -  qx2. 

APPENDIX 

E'=  4 ( C n -  C,2) (CI! + 2C,2)C44 
C 

cr~,- 
2G1C44-(Cn-C12) (Cu + 2C,2) 

. . . . . . . . . . . . . .  

C 

where 

2C12C44 
cry,-- C ' 

C= 2CHC44-I-(CxI- C12) (C u "q- 2C12) • 
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Derivation and Experimental Verification of the Normalized Resolution Function for 
Inelastic Neutron Scattering* 
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Based upon the work of Cooper & Nathans, an expression for the normalized resolution function of a 
triple-axis neutron spectrometer is derived and tested experimentally. The formalism is extended to 
show the explicit dependence of the integrated intensity of a sharp excitation spectrum on all of the 
relevant instrumental parameters. Extensive measurements of the integrated intensities of phonons in 
copper have been carried out for a wide range of all adjustable parameters. The experimentally deter- 
mined intensities are found to be in good agreement with the calculated values. 

1. Introduction 

Resolution effects in triple-axis neutron spectrometers 
were first considered by Caglioti, Paoletti & Ricci 
(1958) and Collins (1963). These authors considered 
the effect of horizontal collimations and mosaic 
spreads for special arrangements of relaxed collima- 
tions. Stedman (1968) and Bjerrum Moiler & Nielsen 
(1970) derived expressions for the dependence of the 
intensity on the horizontal collimation, mosaic spread 
of the monochromator and analyzer crystals and Bragg 
angles of those crystals. Expressions for the width of an 
inelastic peak were derived by Stedman & Nilsson 
(1966), Cooper & Nathans (1967) and Nielsen & 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

t Work supported by the U. S. Atomic Energy Commission 
Grant No. AT(30-1)-4084 Mod. 1. 

:I: Present address: Ames Laboratory-USAEC and Depart- 
ment of Physics, Iowa State University, Ames, Iowa 50010. 

Bjerrum Moiler (1969). Though derived by different 
methods, the expressions for the peak width are in 
mutual agreement. None of these authors, however, is 
concerned with the correct normalization of the resolu- 
tion function since they were interested in line shapes 
rather than in accurate measurements of scattering 
intensities. 

Although an essentially correct formulation of the 
resolution-function normalization has existed in our 
laboratory for several years [see for example Samuel- 
sen, Hutchings & Shirane (1970)], in the course of a 
study of phonon intensities in zinc we felt it necessary 
to formalize the derivation and to test experimentally 
the salient features of the results. To this end, we have 
extended the resolution-function calculations of Cooper 
& Nathans (1967)* to give a closed analytic expression 
for the normalized resolution function of a triple-axis 
spectrometer. This result is used to derive the inte- 

* See Appendix. 


